The Gene Manipulation core has since late 2015 begun to utilize this single step founder generation technique to produce gene knockout and knock-in, conditional allele, insertion of reporter genes, Cre drivers and KO of multiple loci. Almost all gene targeting performed by the core is now CRISPR/Cas9 based.
The core also serves as an in-house repository of cryopreserved mouse strains in the form of embryos and/or sperm to archive valuable mouse strains. The cryopreservation service saves space and cost of live colonies and prevents accidental loss of invaluable strains.
The core also provides resources and comprehensive knowledge of complex mouse model generation; genotyping founder lines, breeding strategies etc. The core remains vigilant in evaluating new gene manipulation technologies, their effectiveness and demand, cost and limitations. Cost effectiveness of service fee is established by an annual review of service fees offered by other Longwood/Harvard core facilities and fees are adjusted accordingly. Furthermore, we respond to users' feedback regarding the types of support and services they require. The technology required for CRISPR/Cas9 genome editing, culturing and genetic modification of ES cells, micromanipulation of pre-implantation mouse embryos and embryo transfer by mouse survival surgeries, are best fulfilled by a core facility. These procedures require quality-controlled reagents, microinjection and mouse surgery require specialized skills, equipment, and dedicated mouse colonies. The costs of developing and maintaining the ability to perform these procedures are prohibitive to most investigators, especially those that generate new mouse lines infrequently.
Consolidation of these technologies within a core facility serving multiple investigators allows individual investigators access to specialized techniques that might otherwise not be available to them except by very expensive commercial vendors.
Mouse core routinely perform in vivo genome editing service using CRISPR/Cas9 technology and generated more than 200 novel mouse models.
We are funded by NIH P50 HD105351.