Overview:
The Alt lab made transformative leaps in our mechanistic understanding of the two distinct programmed rearrangement mechanisms, V(D)J recombination and IgH CSR, in lymphocytes by discovering that processes involved in genome-wide modulation of chromosome architecture play fundamental roles in both.
- Hu J, Zhang Y, Zhao L, Frock RL, Du Z, Meyers RM, Meng FL, Schatz DG & Alt FW. Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 2015; 163:947-59.
- Dong J, Panchakshari RA, Zhang T, Zhang Y, Hu J, Volpi SA, Meyers RM, Ho YJ, Du Z, Robbiani DF, Meng F, Gostissa M, Nussenzweig MC, Manis JP & Alt FW. Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature 2015; 525:134-39.
- Jain S, Ba Z, Zhang Y, Dai HQ & Alt FW. CTCF-binding elements mediate accessibility of RAG substrates during chromatin scanning. Cell 2018; 174:102-16.e14.
- Zhao L, Frock RL, Du Z, Hu J, Chen L, Krangel MS & Alt FW. Orientation-specific RAG activity in chromosomal loop domains contributes to Tcrd V(D)J recombination during T cell development. J Exp Med 2016; 213:1921-36.
- Zhang Y, Zhang X, Ba Z, Liang Z, Dring EW, Hu H, Lou J, Kyritsis N, Zurita J, Shamim MS, Presser Aiden A, Lieberman Aiden E & Alt FW. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 2019; 573:600-04.
- Ba Z, Lou J, Ye AY, Dai H-Q, Dring EW, Lin SG, Jain S, Kieffer-Kwon K-R, Casellas R & Alt FW. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 2020; 586:305-10.
- Dai H-Q, Hu H, Lou J, Ye AY, Ba Z, Zhang X, Zhang Y, Zhao L, Yoon HS, Chapdelaine-Williams AM, Kyritsis N, Chen H, Johnson K, Lin S, Conte A, Casellas R, Lee C-S, Alt FW. (2021) Loop extrusion mediates physiological IgH locus contraction for RAG scanning. Nature.
- Zhang X, Zhang Y, Ba Z, Kyritsis N, Casellas R & Alt FW. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 2019; 575:385-89.
They discovered that these two very different recombination processes, which occur at different stages of B lymphocyte development, both use cohesin-mediated chromatin loop extrusion to reel long loops of chromatin past recombination centers. For each, loop extrusion leads to juxtaposition of cis-regulatory elements, substrate DNA sequences, and initiating enzymes. Remarkably, V(D)J recombination and CSR both also incorporate loop extrusion to promote proper joining orientation of joined sequences, albeit by distinct mechanisms.
- Zhang Y, Zhang X, Ba Z, Liang Z, Dring EW, Hu H, Lou J, Kyritsis N, Zurita J, Shamim MS, Presser Aiden A, Lieberman Aiden E & Alt FW. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 2019; 573:600-04.
- Zhang X, Zhang Y, Ba Z, Kyritsis N, Casellas R & Alt FW. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 2019; 575:385-89.
V(D)J Recombination:
V(D)J recombination assembles IgH variable region exons from V, D, and J gene segments that lie in clusters across the 2.7 Mb upstream portion of the IgH locus. V(D)J recombination is initiated by RAG1/2 endonuclease ("RAG") which introduces requisite DNA DSBs at two gene segments to be joined (e.g. D and JH segments). Upon RAG-binding and acquisition of a JH in a recombination center at the downstream end of the V(D)J locus, the RC serves as a "dynamic sub-loop anchor" for cohesin-mediated loop extrusion-based presentation of the D-containing upstream region to RAG, a process that plays a key role in orientation-specific D to JH joining (V(D)J recombination video) to form DJH intermediates.
- Zhang Y, Zhang X, Ba Z, Liang Z, Dring EW, Hu H, Lou J, Kyritsis N, Zurita J, Shamim MS, Presser Aiden A, Lieberman Aiden E & Alt FW. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 2019; 573:600-04.
- Ba Z, Lou J, Ye AY, Dai H-Q, Dring EW, Lin SG, Jain S, Kieffer-Kwon K-R, Casellas R & Alt FW. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 2020; 586:305-10.
The DJH intermediate forms a new RC poised for joining to upstream & VHs, which are all oriented to join by deletion. The Alt lab most recently discovered IgH locus VH to (D)J recombination across long (2.4Mb) VH-containing IgH domains can be developmentally regulated in pro-B cell line models via down-modulation of the level or activity of two cohesin-complex factors (i.e. CTCF or Wapl) to extend V(D)J recombination past chromatin impediments to loop extrusion, such as the numerous CTCF binding sites (CBEs) preceding or within the upstream VH-containing region.
- Ba Z, Lou J, Ye AY, Dai H-Q, Dring EW, Lin SG, Jain S, Kieffer-Kwon K-R, Casellas R & Alt FW. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 2020; 586:305-10.
- Dai H-Q, Hu H, Lou J, Ye AY, Ba Z, Zhang X, Zhang Y, Zhao L, Yoon HS, Chapdelaine-Williams AM, Kyritsis N, Chen H, Johnson K, Lin S, Conte A, Casellas R, Lee C-S, Alt FW. (2021) Loop extrusion mediates physiological IgH locus contraction for RAG scanning. Nature.
Moreover, we further implicated down-regulation of Wapl levels in developing bone marrow pro-B cells as a mechanism to promote VH usage across this long upstream chromatin region to generate diverse primary antibody repertoires. This general mechanism for regulation of cohesin-mediated loop extrusion likely will have implications for regulation of gene expression beyond the IgH locus, particularly across long chromosomal distances.
In addition to a more detailed elucidation of locus contraction and RAG-scanning mechanisms in the IgH locus, we are also elucidating such mechanisms in the Igκ light chain locus, which has different constraints with respect to joining models. Igκ variable region exons are assembled by direct Vκ to Jκ joining. In contrast to the IgH locus, where all VHs are oriented for deletional joining to DJH complexes, the more than 100 Vκs embedded within the 3Mb Vκ locus lie in both orientations relative to the Jκ and, thus, many must undergo inversional Vκ to Jκ joining, that would not be consistent with strictly linear RAG scanning that dominates IgH locus V(D)J recombination. Yet our preliminary studies do implicate a role for loop-extrusion mediated RAG linear scanning in Igκ V(D)J recombination, albeit potentially more limited or focused. Moreover, we further found that Wapl levels in transformed pro-B cell lines sufficient to impede contraction and scanning of the VH locus still allow normal contraction and scanning of the Vκ locus. Ongoing studies will further define mechanism by which linear loop extrusion-mediated RAG scanning contributes to V(D)J recombination within the Vκ versus VH loci, including potential differential roles of RC functions, chromatin structural elements, and/or differential expression or modification of cohesin complex factors. We are also exploring how VH locales dynamically interact with the recombination center by super-resolution imaging in a collaboration between our lab and the lab of Xiaowei Zhuang at Harvard University.
IgH CSR:
In activated mature B cells, IgH CSR replaces the initially expressed Cμ constant region exons with one of 6 sets of other constant region exons in the 200kb downstream portion of the IgH locus to effect changes in antibody effector functions. Activation-induced cytidine deaminase (AID) initiates CSR by generating deamination lesions at short target motifs within donor Sμ and a downstream acceptor S region. After these lesions are converted into DSBs by DNA repair factors. The Alt lab discovered that programmed deletional end-joining of the upstream end of an Sμ DSB to the downstream end of an accepter S region DSB completes CSR. How such AID generated DSBs are are programmed to join in deletional versus inversional orientation had been puzzling. While CSR DSB synapsis was widely assumed to occur by diffusion, such a mechanism was difficult to reconcile with various CSR mechanistic features and implied led to our proposal of an "unprecedented" CSR DSB joining mechanism. Our recent studies now implicate cohesin-mediated loop extrusion as a fundamental contributor to this mechanism. The current Alt lab CSR model, based on substantial evidence, provides a substantial step-forward from static textbook views (CSR video). Before B cell activation, loop extrusion brings the distant 3’IgHRR into proximity with donor Sμ to form a dynamic CSR center, with potential accepter CHs sequestered in the extruded loop. Cytokines/activators prime a CH promoter just upstream of a target S region for activation by the 3'IgHRR super-enhancer upon extrusion through the CSR center. The transcriptionally activated CH-promoter loads cohesin, resulting in additional extrusion that aligns the activated acceptor S region with Sμ. B cells activation also induces AID, which is transcriptionally recruited to the S regions to initiate DSBs. Additional findings support an end-joining model in which opposing cohesin rings put tension on two S regions aligned between them, with DSB ends in each individually reeled into the ring, stalling extrusion and aligning ends for deletional joining.
Major ongoing goals of the CSR project include elucidating roles of cohesin-complex proteins in the CSR mechanism more directly, particularly in the end-joining step, and also assessing whether related end-joining mechanisms might fuse DSBs in other loop extrusion-impeded genomic regions, particularly in settings that promote increased or persistent DSBs.