Figure legend: Schematic illustration of a proposed role of RORα in regulating pathologic retinal neovascularization in retinopathy through modulation of SOCS3-dependent inflammation. Schematic drawing of eyes illustrates pathologic neovascularization in retinopathy associated with pro-inflammatory cytokines. Loss of RORα in Staggerer mice (Sg/Sg) increased transcription of Socs3, a negative regulator of inflammation. This led to changes in macrophage function from a pro-inflammatory state to an anti-inflammatory state, with decreased expression levels of inflammatory cytokines (Tnf, Il1b, Il6) and increased levels of anti-inflammatory cytokine Il10, thereby alleviating pathologic neovascularization in retinopathy. Inhibition of RORα with an inverse agonist SR1001 promoted Socs3 expression and protected against retinopathy. Thus targeted inhibition of RORα may represent a new potential therapeutic approach in treating retinopathy.
Project Two: Small non-coding RNAs in retinal angiogenesis
This project investigates the role of small non-coding RNAs, particularly microRNAs in regulating retinal angiogenesis in development and in diseases. One example is miR-150, which we found was specifically enriched in normal retinal vessels and suppressed in pathologic neovascularization. Our findings suggest miR-150 may function as an intrinsic suppressor of ocular neovascularization.