Just like the rest of the proteins in the body, instructions to make the sarcomeric proteins are encoded by different genes in the DNA. The DNA is actually a long string formed by four chemicals, namely, Adenine, Guanine, Cytosine, and Thymine (A, G, C, and T). The order in which these chemicals are found is what determines the genetic code, or sequence. A change in this order (i.e. mutation) results in a change of the encoded protein.
Proteins play many roles in the body. For example, they give the cues for development, determine eye color, and help in food digestion, among others.
Proteins play many roles in the body. For example, they give the cues for development, determine eye color, and help in food digestion, among others. Proteins are essential for body function and therefore, certain protein alterations can cause disease. In particular, alterations in any of the sarcomeric muscle proteins can potentially cause muscle disease. For example, alterations in actin are known to cause nemaline myopathy, a disease of skeletal muscle that causes low muscle tone, muscle weakness and respiratory difficulties, among others. Protein alterations are caused by gene changes (mutations).
At this point, it is worth mentioning that not all genetic changes have an impact on our health. Although the vast majority of the DNA is very similar among different people, some parts of the DNA may vary. All human beings are different. People have different skin color, hair, and eye color. The reason for these differences is that everybody's DNA is different. Most of the time, the DNA changes that produce different skin or eye colors do not have an impact on our health. In addition, many DNA changes are "silent," having no known effects on our development.
Silent" DNA changes do not cause disease or differences between individuals. When a new mutation is found in an individual, it is important to confirm whether the DNA change is disease causing or not. In the Beggs Laboratory, we do that by comparing samples from affected to non-affected family members, as well as to samples from members of the general population. If a mutation is present in both affected and non-affected family members, then we are likely to conclude that this mutation does not cause disease.
A genetic change that interferes with somebody's health must be significant enough so that the function of the protein encoded by the gene becomes altered. The outcome of a particular gene alteration is also dependent on how essential to the body is the protein made by that gene. Certain mutations in the genes encoding actin, nebulin, troponin, and tropomyosin cause nemaline myopathy, a disease associated with muscle weakness and respiratory problems. Similarly, mutations in the gene for myotubularin 1 cause X-linked myotubular myopathy, a severe condition associated with muscle weakness, skeletal problems, and fatigability. Specific genetic cause(s) for multiminicore disease, congenital fiber-type disproportion (CFTD), as well as certain non-specific myopathies are the subject of current research.
Identification of mutations may lead to better understanding of basic muscle biology, will allow for the development of improved diagnostic tests, and will hopefully lead to insights into therapies. This is why the Beggs Laboratory is actively looking for congenital myopathy-causing genetic changes.