Publications

  1. MAPK Signaling and Angiopoietin-2 Contribute to Endothelial Permeability in Capillary Malformations. bioRxiv. 2025 Apr 05. View Abstract
  2. An endothelial specific mouse model for the capillary malformation mutation Gnaq p.R183Q. bioRxiv. 2025 Mar 18. View Abstract
  3. Arteriovenous malformation Map2k1 mutation affects vasculogenesis. Sci Rep. 2023 07 08; 13(1):11074. View Abstract
  4. Endothelial cell expression of mutant Map2k1 causes vascular malformations in mice. Angiogenesis. 2023 02; 26(1):97-105. View Abstract
  5. Bockenheimer disease is associated with a TEK variant. Cold Spring Harb Mol Case Stud. 2021 12; 7(6). View Abstract
  6. Parkes Weber syndrome with lymphedema caused by a somatic KRAS variant. Cold Spring Harb Mol Case Stud. 2021 12; 7(6). View Abstract
  7. EPHB4 mutation causes adult and adolescent-onset primary lymphedema. Am J Med Genet A. 2021 12; 185(12):3810-3813. View Abstract
  8. Lipoblastoma phenotype contains a somatic PIK3CA mutation. Pediatr Dermatol. 2021 Jan; 38(1):299-300. View Abstract
  9. Arteriovenous malformation phenotype resembling congenital hemangioma contains KRAS mutations. Clin Genet. 2020 12; 98(6):595-597. View Abstract
  10. Endothelial MAP2K1 mutations in arteriovenous malformation activate the RAS/MAPK pathway. Biochem Biophys Res Commun. 2020 08 20; 529(2):450-454. View Abstract
  11. Arteriovenous Malformation MAP2K1 Mutation Causes Local Cartilage Overgrowth by a Cell-Non Autonomous Mechanism. Sci Rep. 2020 03 10; 10(1):4428. View Abstract
  12. Diffuse capillary malformation with overgrowth contains somatic PIK3CA variants. Clin Genet. 2020 05; 97(5):736-740. View Abstract
  13. Somatic mutations in intracranial arteriovenous malformations. PLoS One. 2019; 14(12):e0226852. View Abstract
  14. Arteriovenous malformation associated with a HRAS mutation. Hum Genet. 2019 Dec; 138(11-12):1419-1421. View Abstract
  15. Intramuscular fast-flow vascular anomaly contains somatic MAP2K1 and KRAS mutations. Angiogenesis. 2019 11; 22(4):547-552. View Abstract
  16. The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects. Development. 2018 01 08; 145(1). View Abstract
  17. Lubricin restoration in a mouse model of congenital deficiency. Arthritis Rheumatol. 2015 Nov; 67(11):3070-81. View Abstract
  18. Golgi disruption and early embryonic lethality in mice lacking USO1. PLoS One. 2012; 7(11):e50530. View Abstract
  19. Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol. 2010 Sep; 177(3):1459-69. View Abstract
  20. Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210. N Engl J Med. 2010 Jan 21; 362(3):206-16. View Abstract
  21. Generation of mice harboring a Sox6 conditional null allele. Genesis. 2006 May; 44(5):219-24. View Abstract
  22. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today. 2005 Sep; 75(3):200-12. View Abstract
  23. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005 Mar; 115(3):622-31. View Abstract
  24. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J Cell Biol. 2004 Mar 01; 164(5):747-58. View Abstract
  25. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development. 2003 Mar; 130(6):1135-48. View Abstract
  26. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation. 1995 Oct 15; 92(8):2135-41. View Abstract

Contact Patrick Smits