Publications

2024

Jahromi S, Matarrese MAG, Fabbri L, et al. Overlap of spike and ripple propagation onset predicts surgical outcome in epilepsy.. Annals of clinical and translational neurology. Published online 2024. doi:10.1002/acn3.52156

OBJECTIVE: Interictal biomarkers are critical for identifying the epileptogenic focus. However, spikes and ripples lack specificity while fast ripples lack sensitivity. These biomarkers propagate from more epileptogenic onset to areas of spread. The pathophysiological mechanism of these propagations is elusive. Here, we examine zones where spikes and high frequency oscillations co-occur (SHFO), the spatiotemporal propagations of spikes, ripples, and fast ripples, and evaluate the spike-ripple onset overlap (SRO) as an epilepsy biomarker.

METHODS: We retrospectively analyzed intracranial EEG data from 41 patients with drug-resistant epilepsy. We mapped propagations of spikes, ripples, and fast ripples, and identified their onset and spread zones, as well as SHFO and SRO. We then estimated the SRO prognostic value in predicting surgical outcome and compared it to onset and spread zones of spike, ripple, and fast ripple propagations, and SHFO.

RESULTS: We detected spikes and ripples in all patients and fast ripples in 12 patients (29%). We observed spike and ripple propagations in 40 (98%) patients. Spike and ripple onsets overlapped in 35 (85%) patients. In good outcome patients, SRO showed higher specificity and precision (p < 0.05) in predicting resection compared to onset and zones of spikes, ripples, and SHFO. Only SRO resection predicted outcome (p = 0.01) with positive and negative predictive values of 82% and 57%, respectively.

INTERPRETATION: SRO is a specific and precise biomarker of the epileptogenic zone whose removal predicts outcome. SRO is present in most patients with drug-resistant epilepsy. Such a biomarker may reduce prolonged intracranial monitoring and improve outcome.

Dmytriw AA, Hadjinicolaou A, Ntolkeras G, et al. Magnetoencephalography for the pediatric population, indications, acquisition and interpretation for the clinician.. The neuroradiology journal. Published online 2024:19714009241260801. doi:10.1177/19714009241260801

Magnetoencephalography (MEG) is an imaging technique that enables the assessment of cortical activity via direct measures of neurophysiology. It is a non-invasive and passive technique that is completely painless. MEG has gained increasing prominence in the field of pediatric neuroimaging. This dedicated review article for the pediatric population summarizes the fundamental technical and clinical aspects of MEG for the clinician. We discuss methods tailored for children to improve data quality, including child-friendly MEG facility environments and strategies to mitigate motion artifacts. We provide an in-depth overview on accurate localization of neural sources and different analysis methods, as well as data interpretation. The contemporary platforms and approaches of two quaternary pediatric referral centers are illustrated, shedding light on practical implementations in clinical settings. Finally, we describe the expanding clinical applications of MEG, including its pivotal role in presurgical evaluation of epilepsy patients, presurgical mapping of eloquent cortices (somatosensory and motor cortices, visual and auditory cortices, lateralization of language), its emerging relevance in autism spectrum disorder research and potential future clinical applications, and its utility in assessing mild traumatic brain injury. In conclusion, this review serves as a comprehensive resource of clinicians as well as researchers, offering insights into the evolving landscape of pediatric MEG. It discusses the importance of technical advancements, data acquisition strategies, and expanding clinical applications in harnessing the full potential of MEG to study neurological conditions in the pediatric population.

Ntolkeras G, Makaram N, Bernabei M, et al. Interictal EEG source connectivity to localize the epileptogenic zone in patients with drug-resistant epilepsy: A machine learning approach.. Epilepsia. 2024;65(4):944-960. doi:10.1111/epi.17898

OBJECTIVE: To deconstruct the epileptogenic networks of patients with drug-resistant epilepsy (DRE) using source functional connectivity (FC) analysis; unveil the FC biomarkers of the epileptogenic zone (EZ); and develop machine learning (ML) models to estimate the EZ using brief interictal electroencephalography (EEG) data.

METHODS: We analyzed scalp EEG from 50 patients with DRE who had surgery. We reconstructed the activity (electrical source imaging [ESI]) of virtual sensors (VSs) across the whole cortex and computed FC separately for epileptiform and non-epileptiform EEG epochs (with or without spikes). In patients with good outcome (Engel 1a), four cortical regions were defined: EZ (resection) and three non-epileptogenic zones (NEZs) in the same and opposite hemispheres. Region-specific FC features in six frequency bands and three spatial ranges (long, short, inner) were compared between regions (Wilcoxon sign-rank). We developed ML classifiers to identify the VSs in the EZ using VS-specific FC features. Cross-validation was performed using good outcome data. Performance was compared with poor outcomes and interictal spike localization.

RESULTS: FC differed between EZ and NEZs (p < .05) during non-epileptiform and epileptiform epochs, showing higher FC in the EZ than its homotopic contralateral NEZ. During epileptiform epochs, the NEZ in the epileptogenic hemisphere showed higher FC than its contralateral NEZ. In good outcome patients, the ML classifiers reached 75% accuracy to the resection (91% sensitivity; 74% specificity; distance from EZ: 38 mm) using epileptiform epochs (gamma and beta frequency bands) and 62% accuracy using broadband non-epileptiform epochs, both outperforming spike localization (accuracy = 47%; p < .05; distance from EZ: 57 mm). Lower performance was seen in poor outcomes.

SIGNIFICANCE: We present an FC approach to extract EZ biomarkers from brief EEG data. Increased FC in various frequencies characterized the EZ during epileptiform and non-epileptiform epochs. FC-based ML models identified the resection better in good than poor outcome patients, demonstrating their potential for presurgical use in pediatric DRE.

Chericoni A, Ricci L, Ntolkeras G, et al. Sleep Spindle Generation Before and After Epilepsy Surgery: A Source Imaging Study in Children with Drug-Resistant Epilepsy.. Brain topography. 2024;37(1):88-101. doi:10.1007/s10548-023-01007-1

INTRODUCTION: Literature lacks studies investigating the cortical generation of sleep spindles in drug-resistant epilepsy (DRE) and how they evolve after resection of the epileptogenic zone (EZ). Here, we examined sleep EEGs of children with focal DRE who became seizure-free after focal epilepsy surgery, and aimed to investigate the changes in the spindle generation before and after the surgery using low-density scalp EEG and electrical source imaging (ESI).

METHODS: We analyzed N2-sleep EEGs from 19 children with DRE before and after surgery. We identified slow (8-12 Hz) and fast spindles (13-16 Hz), computed their spectral features and cortical generators through ESI and computed their distance from the EZ and irritative zone (IZ). We performed two-way ANOVA testing the effect of spindle type (slow vs. fast) and surgical phase (pre-surgery vs. post-surgery) on each feature.

RESULTS: Power, frequency and cortical activation of slow spindles increased after surgery (p < 0.005), while this was not seen for fast spindles. Before surgery, the cortical generators of slow spindles were closer to the EZ (57.3 vs. 66.2 mm, p = 0.007) and IZ (41.3 vs. 55.5 mm, p = 0.02) than fast spindle generators.

CONCLUSIONS: Our data indicate alterations in the EEG slow spindles after resective epilepsy surgery. Fast spindle generation on the contrary did not change after surgery. Although the study is limited by its retrospective nature, lack of healthy controls, and reduced cortical spatial sampling, our findings suggest a spatial relationship between the slow spindles and the epileptogenic generators.

2023

Chikara RK, Jahromi S, Tamilia E, et al. Electromagnetic source imaging predicts surgical outcome in children with focal cortical dysplasia.. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2023;153:88-101. doi:10.1016/j.clinph.2023.06.015

OBJECTIVE: To evaluate the diagnostic accuracy of electromagnetic source imaging (EMSI) in localizing spikes and predict surgical outcome in children with drug resistant epilepsy (DRE) due to focal cortical dysplasia (FCD).

METHODS: We retrospectively analyzed magnetoencephalography (MEG) and high-density (HD-EEG) data from 23 children with FCD-associated DRE who underwent intracranial EEG and surgery. We localized spikes using equivalent current dipole (ECD) fitting, dipole clustering, and dynamical statistical parametric mapping (dSPM) on EMSI, electric source imaging (ESI), and magnetic source imaging (MSI). We calculated the distance from the seizure onset zone (DSOZ) and resection (DRES). We estimated receiver operating characteristic (ROC) curves with Youden's index (J) to predict outcome.

RESULTS: EMSI presented shorter DSOZ (15.18 ± 9.06 mm) and DRES (8.56 ± 6.24 mm) compared to ESI (DSOZ: 25.04 ± 16.20 mm, p < 0.009; DRES: 18.88 ± 17.30 mm, p < 0.03) and MSI (DSOZ: 23.37 ± 8.98 mm, p < 0.03; DRES: 15.51 ± 10.11 mm, p < 0.02) for clustering in patients with good outcome. Clustering showed shorter DSOZ and DRES compared to ECD fitting and dSPM (p < 0.05). EMSI had higher performance as outcome predictor (J = 70.63%) compared to ESI (J = 41.27%) and MSI (J = 33.33%) for clustering.

CONCLUSIONS: EMSI provides superior localization and improved predictive performance than individual modalities.

SIGNIFICANCE: EMSI can help the surgical planning and facilitate the localization of epileptogenic foci.

Matarrese MAG, Loppini A, Fabbri L, et al. Spike propagation mapping reveals effective connectivity and predicts surgical outcome in epilepsy.. Brain : a journal of neurology. 2023;146(9):3898-3912. doi:10.1093/brain/awad118

Neurosurgical intervention is the best available treatment for selected patients with drug resistant epilepsy. For these patients, surgical planning requires biomarkers that delineate the epileptogenic zone, the brain area that is indispensable for the generation of seizures. Interictal spikes recorded with electrophysiological techniques are considered key biomarkers of epilepsy. Yet, they lack specificity, mostly because they propagate across brain areas forming networks. Understanding the relationship between interictal spike propagation and functional connections among the involved brain areas may help develop novel biomarkers that can delineate the epileptogenic zone with high precision. Here, we reveal the relationship between spike propagation and effective connectivity among onset and areas of spread and assess the prognostic value of resecting these areas. We analysed intracranial EEG data from 43 children with drug resistant epilepsy who underwent invasive monitoring for neurosurgical planning. Using electric source imaging, we mapped spike propagation in the source domain and identified three zones: onset, early-spread and late-spread. For each zone, we calculated the overlap and distance from surgical resection. We then estimated a virtual sensor for each zone and the direction of information flow among them via Granger causality. Finally, we compared the prognostic value of resecting these zones, the clinically-defined seizure onset zone and the spike onset on intracranial EEG channels by estimating their overlap with resection. We observed a spike propagation in source space for 37 patients with a median duration of 95 ms (interquartile range: 34-206), a spatial displacement of 14 cm (7.5-22 cm) and a velocity of 0.5 m/s (0.3-0.8 m/s). In patients with good surgical outcome (25 patients, Engel I), the onset had higher overlap with resection [96% (40-100%)] than early-spread [86% (34-100%), P = 0.01] and late-spread [59% (12-100%), P = 0.002], and it was also closer to resection than late-spread [5 mm versus 9 mm, P = 0.007]. We found an information flow from onset to early-spread in 66% of patients with good outcomes, and from early-spread to onset in 50% of patients with poor outcome. Finally, resection of spike onset, but not area of spike spread or the seizure onset zone, predicted outcome with positive predictive value of 79% and negative predictive value of 56% (P = 0.04). Spatiotemporal mapping of spike propagation reveals information flow from onset to areas of spread in epilepsy brain. Surgical resection of the spike onset disrupts the epileptogenic network and may render patients with drug resistant epilepsy seizure-free without having to wait for a seizure to occur during intracranial monitoring.

Rijal S, Corona L, Perry S, et al. Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy.. Scientific reports. 2023;13(1):9622. doi:10.1038/s41598-023-36551-0

Normal brain functioning emerges from a complex interplay among regions forming networks. In epilepsy, these networks are disrupted causing seizures. Highly connected nodes in these networks are epilepsy surgery targets. Here, we assess whether functional connectivity (FC) using intracranial electroencephalography can quantify brain regions epileptogenicity and predict surgical outcome in children with drug resistant epilepsy (DRE). We computed FC between electrodes on different states (i.e. interictal without spikes, interictal with spikes, pre-ictal, ictal, and post-ictal) and frequency bands. We then estimated the electrodes' nodal strength. We compared nodal strength between states, inside and outside resection for good- (n = 22, Engel I) and poor-outcome (n = 9, Engel II-IV) patients, respectively, and tested their utility to predict the epileptogenic zone and outcome. We observed a hierarchical epileptogenic organization among states for nodal strength: lower FC during interictal and pre-ictal states followed by higher FC during ictal and post-ictal states (p < 0.05). We further observed higher FC inside resection (p < 0.05) for good-outcome patients on different states and bands, and no differences for poor-outcome patients. Resection of nodes with high FC was predictive of outcome (positive and negative predictive values: 47-100%). Our findings suggest that FC can discriminate epileptogenic states and predict outcome in patients with DRE.

Ricci L, Tamilia E, Mercier M, et al. Phase-amplitude coupling between low- and high-frequency activities as preoperative biomarker of focal cortical dysplasia subtypes.. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2023;150:40-48. doi:10.1016/j.clinph.2023.03.006

OBJECTIVE: To evaluate whether ictal phase-amplitude coupling (PAC) between high-frequency activity and low-frequency activity could be used as a preoperative biomarker of Focal Cortical Dysplasia (FCD) subtypes. We hypothesize that FCD seizures present unique PAC characteristics that may be linked to their specific histopathological features.

METHODS: We retrospectively examined 12 children with FCD and refractory epilepsy who underwent successful epilepsy surgery. We identified ictal onsets recorded with stereo-EEG. We estimated the strength of PAC between low-frequencies and high-frequencies for each seizure by means of modulation index. Generalized mixed effect models and receiver operating characteristic (ROC) curve analysis were used to test the association between ictal PAC and FCD subtypes.

RESULTS: Ictal PAC was significantly higher in patients with FCD type II compared to type I, only on SOZ-electrodes (p < 0.005). No differences in ictal PAC were found on non-SOZ electrodes. Pre-ictal PAC registered on SOZ electrodes predicted FCD histopathology with a classification accuracy > 0.9 (p < 0.05).

CONCLUSIONS: The correlations between histopathology and neurophysiology provide evidence for the contribution of ictal PAC as a preoperative biomarker of FCD subtypes.

SIGNIFICANCE: Developed into a proper clinical application, such a technique may help improve clinical management and facilitate the prediction of surgical outcome in patients with FCD undergoing stereo-EEG monitoring.

Corona L, Tamilia E, Perry S, et al. Non-invasive mapping of epileptogenic networks predicts surgical outcome.. Brain : a journal of neurology. 2023;146(5):1916-1931. doi:10.1093/brain/awac477

Epilepsy is increasingly considered a disorder of brain networks. Studying these networks with functional connectivity can help identify hubs that facilitate the spread of epileptiform activity. Surgical resection of these hubs may lead patients who suffer from drug-resistant epilepsy to seizure freedom. Here, we aim to map non-invasively epileptogenic networks, through the virtual implantation of sensors estimated with electric and magnetic source imaging, in patients with drug-resistant epilepsy. We hypothesize that highly connected hubs identified non-invasively with source imaging can predict the epileptogenic zone and the surgical outcome better than spikes localized with conventional source localization methods (dipoles). We retrospectively analysed simultaneous high-density electroencephalography (EEG) and magnetoencephalography data recorded from 37 children and young adults with drug-resistant epilepsy who underwent neurosurgery. Using source imaging, we estimated virtual sensors at locations where intracranial EEG contacts were placed. On data with and without spikes, we computed undirected functional connectivity between sensors/contacts using amplitude envelope correlation and phase locking value for physiologically relevant frequency bands. From each functional connectivity matrix, we generated an undirected network containing the strongest connections within sensors/contacts using the minimum spanning tree. For each sensor/contact, we computed graph centrality measures. We compared functional connectivity and their derived graph centrality of sensors/contacts inside resection for good (n = 22, ILAE I) and poor (n = 15, ILAE II-VI) outcome patients, tested their ability to predict the epileptogenic zone in good-outcome patients, examined the association between highly connected hubs removal and surgical outcome and performed leave-one-out cross-validation to support their prognostic value. We also compared the predictive values of functional connectivity with those of dipoles. Finally, we tested the reliability of virtual sensor measures via Spearman's correlation with intracranial EEG at population- and patient-level. We observed higher functional connectivity inside than outside resection (P < 0.05, Wilcoxon signed-rank test) for good-outcome patients, on data with and without spikes across different bands for intracranial EEG and electric/magnetic source imaging and few differences for poor-outcome patients. These functional connectivity measures were predictive of both the epileptogenic zone and outcome (positive and negative predictive values ≥55%, validated using leave-one-out cross-validation) outperforming dipoles on spikes. Significant correlations were found between source imaging and intracranial EEG measures (0.4 ≤ rho ≤ 0.9, P < 0.05). Our findings suggest that virtual implantation of sensors through source imaging can non-invasively identify highly connected hubs in patients with drug-resistant epilepsy, even in the absence of frank epileptiform activity. Surgical resection of these hubs predicts outcome better than dipoles.

2022

Morton SU, Leyshon BJ, Tamilia E, et al. A Role for Data Science in Precision Nutrition and Early Brain Development.. Frontiers in psychiatry. 2022;13:892259. doi:10.3389/fpsyt.2022.892259

Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.