Publications

2003

Bönnemann, Thompson, Ven, Goebel, Warlo, Vollmers, Reimann, Herms, Gautel, Takada, et al. Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle. J Neurol Sci. 2003;206(1):71–8.
Filamin C is the muscle isoform of a group of large actin-crosslinking proteins. On the one hand, filamin C is associated with the Z-disk of the myofibrillar apparatus and binds to myotilin; on the other hand, it interacts with the sarcoglycan complex at the sarcolemma. Filamin C may be involved in reorganizing the cytoskeleton in response to signalling events and in muscle it may, in addition, fulfill structural functions at the Z-disk. An examination of biopsies from patients with multi-minicore myopathy, central core myopathy and neurogenic target fibers with core-like target formations (TF) revealed strong reactivity of all the cores and target formations with two different anti-filamin C antibodies. In all three conditions, the immunoreactivity in the cores for filamin C was considerably stronger than that for desmin. Only for alphaB-crystallin were comparable levels of immunoreactivity detected. There was no difference in intensity for filamin C between the three pathological conditions. Thus, filamin C along with alphaB-crystallin is a strong and robust, but nonspecific marker of core formation. The reason why filamin C accumulates in cores is unclear at present, but we postulate that it may be critically involved in the chain of events eventually leading to myofibrillar degeneration.
Sparrow J, Nowak K, Durling H, Beggs A, Wallgren-Pettersson C, Romero N, Nonaka I, Laing N. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord. 2003;13(7-8):519–31.
Mutations in the skeletal muscle alpha-actin gene (ACTA1) associated with congenital myopathy with excess of thin myofilaments, nemaline myopathy and intranuclear rod myopathy were first described in 1999. At that time, only 15 different missense mutations were known in ACTA1. More than 60 mutations have now been identified. This review analyses this larger spectrum of mutations in ACTA1. It investigates the molecular consequences of the mutations found to date, provides a framework for genotype-phenotype correlation and suggests future studies in light of results of investigation of normal and mutant actin in other systems, notably the actin specific to the indirect flight muscles of Drosophila. The larger series confirms that the majority of ACTA1 mutations are dominant, a small number are recessive and most isolated cases with no previous family history have de novo dominant mutations. The severity of the disease caused ranges from lack of spontaneous movements at birth requiring immediate mechanical ventilation, to mild disease compatible with life to adulthood. Overall, the mutations within ACTA1 are randomly distributed throughout the protein. However, the larger series of mutations now available indicates that there may be clustering of mutations associated with some phenotypes, e.g. actin myopathy. This would suggest that interference with certain actin functions may be more associated with certain phenotypes, though the exact pathophysiology of the actin mutations remains unknown.
Yang N, Macarthur D, Gulbin J, Hahn A, Beggs A, Easteal S, North K. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31. doi:10.1086/377590
There is increasing evidence for strong genetic influences on athletic performance and for an evolutionary "trade-off" between performance traits for speed and endurance activities. We have recently demonstrated that the skeletal-muscle actin-binding protein alpha-actinin-3 is absent in 18% of healthy white individuals because of homozygosity for a common stop-codon polymorphism in the ACTN3 gene, R577X. alpha-Actinin-3 is specifically expressed in fast-twitch myofibers responsible for generating force at high velocity. The absence of a disease phenotype secondary to alpha-actinin-3 deficiency is likely due to compensation by the homologous protein, alpha-actinin-2. However, the high degree of evolutionary conservation of ACTN3 suggests function(s) independent of ACTN2. Here, we demonstrate highly significant associations between ACTN3 genotype and athletic performance. Both male and female elite sprint athletes have significantly higher frequencies of the 577R allele than do controls. This suggests that the presence of alpha-actinin-3 has a beneficial effect on the function of skeletal muscle in generating forceful contractions at high velocity, and provides an evolutionary advantage because of increased sprint performance. There is also a genotype effect in female sprint and endurance athletes, with higher than expected numbers of 577RX heterozygotes among sprint athletes and lower than expected numbers among endurance athletes. The lack of a similar effect in males suggests that the ACTN3 genotype affects athletic performance differently in males and females. The differential effects in sprint and endurance athletes suggests that the R577X polymorphism may have been maintained in the human population by balancing natural selection.
Nimgaonkar A, Sanoudou D, Butte A, Haslett J, Kunkel L, Beggs A, Kohane I. Reproducibility of gene expression across generations of Affymetrix microarrays. BMC Bioinformatics. 2003;4:27. doi:10.1186/1471-2105-4-27
BACKGROUND: The development of large-scale gene expression profiling technologies is rapidly changing the norms of biological investigation. But the rapid pace of change itself presents challenges. Commercial microarrays are regularly modified to incorporate new genes and improved target sequences. Although the ability to compare datasets across generations is crucial for any long-term research project, to date no means to allow such comparisons have been developed. In this study the reproducibility of gene expression levels across two generations of Affymetrix GeneChips (HuGeneFL and HG-U95A) was measured. RESULTS: Correlation coefficients were computed for gene expression values across chip generations based on different measures of similarity. Comparing the absolute calls assigned to the individual probe sets across the generations found them to be largely unchanged. CONCLUSION: We show that experimental replicates are highly reproducible, but that reproducibility across generations depends on the degree of similarity of the probe sets and the expression level of the corresponding transcript.
Gurgel-Giannetti J, Reed U, Marie S, Zanoteli E, Fireman M, Oliveira A, Werneck L, Beggs A, Zatz M, Vainzof M. Rod distribution and muscle fiber type modification in the progression of nemaline myopathy. J Child Neurol. 2003;18(3):235–40.
Nemaline myopathy is a structural congenital myopathy associated with the presence of rodlike structures inside the muscle fibers and type I predominance. It may be caused by mutations in at least five genes: slow alpha-tropomyosin 3 (chromosome 1q22-23), nebulin (chromosome 2q21.1-q22), actin (chromosome 1q42), tropomyosin 2 (chromosome 9p13), and troponin T1 (chromosome 19q13.4). The effect of these mutations in the expression of the protein and the mechanism of rod formation is still under investigation. We analyzed the possibility of progressive alterations with time and/or disease evolution, such as transformation of type I to type II fiber and rod pattern and distribution in muscle fibers from patients with nemaline myopathy, through a morphometric and immunohistochemical analysis of different muscle protein isoforms. A tendency of diffuse rods to be organized in the subsarcolemmal region was observed in two patients who were submitted to subsequent biopsies after 10 and 13 years. Additionally, we observed the expression of type II protein isoforms in type I fibers and a higher proportion of type II fibers in the younger patient of a pair of affected sibs, giving further support to the hypothesis of progressive conversion of type II to type I fibers in nemaline myopathy.
Haslett J, Sanoudou D, Kho A, Han M, Bennett R, Kohane I, Beggs A, Kunkel L. Gene expression profiling of Duchenne muscular dystrophy skeletal muscle. Neurogenetics. 2003;4(4):163–71. doi:10.1007/s10048-003-0148-x
The primary cause of Duchenne muscular dystrophy (DMD) is a mutation in the dystrophin gene, leading to absence of the corresponding protein, disruption of the dystrophin-associated protein complex, and substantial changes in skeletal muscle pathology. Although the primary defect is known and the histological pathology well documented, the underlying molecular pathways remain in question. To clarify these pathways, we used expression microarrays to compare individual gene expression profiles for skeletal muscle biopsies from DMD patients and unaffected controls. We have previously published expression data for the 12,500 known genes and full-length expressed sequence tags (ESTs) on the Affymetrix HG-U95Av2 chips. Here we present comparative expression analysis of the 50,000 EST clusters represented on the remainder of the Affymetrix HG-U95 set. Individual expression profiles were generated for biopsies from 10 DMD patients and 10 unaffected control patients. Two methods of statistical analysis were used to interpret the resulting data (t-test analysis to determine the statistical significance of differential expression and geometric fold change analysis to determine the extent of differential expression). These analyses identified 183 probe sets (59 of which represent known genes) that differ significantly in expression level between unaffected and disease muscle. This study adds to our knowledge of the molecular pathways that are altered in the dystrophic state. In particular, it suggests that signaling pathways might be substantially involved in the disease process. It also highlights a large number of unknown genes whose expression is altered and whose identity therefore becomes important in understanding the pathogenesis of muscular dystrophy.
Sanoudou D, Haslett J, Kho A, Guo S, Gazda H, Greenberg S, Lidov H, Kohane I, Kunkel L, Beggs A. Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle. Proc Natl Acad Sci U S A. 2003;100(8):4666–71. doi:10.1073/pnas.0330960100
The nemaline myopathies (NMs) are a clinically and genetically heterogeneous group of disorders characterized by nemaline rods and skeletal muscle weakness. Mutations in five sarcomeric thin filament genes have been identified. However, the molecular consequences of these mutations are unknown. Using Affymetrix oligonucleotide microarrays, we have analyzed the expression patterns of >21,000 genes and expressed sequence tags in skeletal muscles of 12 NM patients and 21 controls. Multiple complementary approaches were used for data analysis, including geometric fold analysis, two-tailed unequal variance t test, hierarchical clustering, relevance network, and nearest-neighbor analysis. We report the identification of high satellite cell populations in NM and the significant down-regulation of transcripts for key enzymes of glucose and glycogen metabolism as well as a possible regulator of fatty acid metabolism, UCP3. Interestingly, transcript level changes of multiple genes suggest possible changes in Ca(2+) homeostasis. The increased expression of multiple structural proteins was consistent with increased fibrosis. This comprehensive study of downstream molecular consequences of NM gene mutations provides insights in the cellular events leading to the NM phenotype.
Zanoteli E, Lotuffo R, Oliveira A, Beggs A, Canovas M, Zatz M, Vainzof M. Deficiency of muscle alpha-actinin-3 is compatible with high muscle performance. J Mol Neurosci. 2003;20(1):39–42. doi:10.1385/JMN:20:1:39
Long-distance runners generally have a remarkably high proportion of slow type I fibers in their lower muscle groups. However, the transformation of type II fast fibers to slow type I fibers as a result of exercise has not been demonstrated clearly. We report the analysis of muscle type composition on m. vastus lateralis from six endurance athletes through the expression of fast, slow, and developmental myosin isoforms, and alpha-actinin-3 (ACTN3) protein. Only one among the marathon runners presented evident type I fiber predominance, and surprisingly, a second athlete showed a deficiency of ACTN3. The deficiency of ACTN3 in the muscle tissue of endurance athletes confirmed the redundancy of this protein for muscle function, even in muscles that are highly required.
Ryan, Ilkovski, Strickland, Schnell, Sanoudou, Midgett, Houston, Muirhead, Dennett, Shield, et al. Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology. 2003;60(4):665–73.
OBJECTIVE: To report pathologic findings in 124 Australian and North American cases of primary nemaline myopathy. METHODS: Results of 164 muscle biopsies from 124 Australian and North American patients with primary nemaline myopathy were reviewed, including biopsies from 19 patients with nemaline myopathy due to alpha-actin (ACTA1) mutations and three with mutations in alpha-tropomyosin(SLOW) (TPM3). For each biopsy rod number per fiber, percentage of fibers with rods, fiber-type distribution of rods, and presence or absence of intranuclear rods were documented. RESULTS: Rods were present in all skeletal muscles and diagnosis was possible at all ages. Most biopsies contained nemaline bodies in more than 50% of fibers, although rods were seen only on electron microscopy in 10 patients. Rod numbers and localization correlated poorly with clinical severity. Frequent findings included internal nuclei and increased fiber size variation, type 1 fiber predominance and atrophy, and altered expression of fiber type specific proteins. Marked sarcomeric disruption, increased glycogen deposition, and intranuclear rods were associated with more severe clinical phenotypes. Serial biopsies showed progressive fiber size variation and increasing numbers of rods with time. Pathologic findings varied widely in families with multiple affected members. CONCLUSIONS: Very numerous nemaline bodies, glycogen accumulation, and marked sarcomeric disruption were common in nemaline myopathy associated with mutations in skeletal alpha-actin. Nemaline myopathy due to mutations in alpha-tropomyosin(SLOW) was characterized by preferential rod formation in, and atrophy of, type 1 fibers. Light microscopic features of nemaline myopathy correlate poorly with disease course. Electron microscopy may correlate better with disease severity and genotype.

2002

Haslett J, Sanoudou D, Kho A, Bennett R, Greenberg S, Kohane I, Beggs A, Kunkel L. Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci U S A. 2002;99(23):15000–5. doi:10.1073/pnas.192571199
The primary cause of Duchenne muscular dystrophy (DMD) is a mutation in the dystrophin gene leading to the absence of the corresponding RNA transcript and protein. Absence of dystrophin leads to disruption of the dystrophin-associated protein complex and substantial changes in skeletal muscle pathology. Although the histological pathology of dystrophic tissue has been well documented, the underlying molecular pathways remain poorly understood. To examine the pathogenic pathways and identify new or modifying factors involved in muscular dystrophy, expression microarrays were used to compare individual gene expression profiles of skeletal muscle biopsies from 12 DMD patients and 12 unaffected control patients. Two separate statistical analysis methods were used to interpret the resulting data: t test analysis to determine the statistical significance of differential expression and geometric fold change analysis to determine the extent of differential expression. These analyses identified 105 genes that differ significantly in expression level between unaffected and DMD muscle. Many of the differentially expressed genes reflect changes in histological pathology. For instance, immune response signals and extracellular matrix genes are overexpressed in DMD muscle, an indication of the infiltration of inflammatory cells and connective tissue. Significantly more genes are overexpressed than are underexpressed in dystrophic muscle, with dystrophin underexpressed, whereas other genes encoding muscle structure and regeneration processes are overexpressed, reflecting the regenerative nature of the disease.