Publications

2017

GP, Diniz, Huang ZP, Liu J, Chen J, Ding J, Fonseca RI, Barreto-Chaves ML, Donato J, Hu X, and Wang DZ. 2017. “Loss of MicroRNA-22 Prevents High-Fat Diet Induced Dyslipidemia and Increases Energy Expenditure Without Affecting Cardiac Hypertrophy”. Clin Sci (Lond). 2017 Dec 15; 131 (24): 2885–2900.
Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity.
RA, Espinoza-Lewis, Yang Q, Liu J, Huang ZP, Hu X, Chen D, and Wang DZ. 2017. “Poly(C) -Binding Protein 1 (Pcbp1) Regulates Skeletal Muscle Differentiation by Modulating MicroRNA Processing in Myoblasts”. J Biol Chem. 2017 292 (23): 9540–9550.
Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3'-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblastsand muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.
ZK, Haque, and Wang DZ. 2017. “How Cardiomyocytes Sense Pathophysiological Stresses for Cardiac Remodeling.”. Cell Mol Life Sci. 2017 03; 74 (6): 983–1000.
In the past decades, the cardiovascular community has laid out the fundamental signaling cascades that become awry in the cardiomyocyte during the process of pathologic cardiac remodeling. These pathways are initiated at the cell membrane and work their way to the nucleus to mediate gene expression. Complexity is multiplied as the cardiomyocyte is subjected to cross talk with other cells as well as a barrage of extracellular stimuli and mechanical stresses. In this review, we summarize the signaling cascades that play key roles in cardiac function and then we proceed to describe emerging concepts of how the cardiomyocyte senses the mechanical and environmental stimuli to transition to the deleterious genetic program that defines pathologic cardiac remodeling. As a highlighting example of these processes, we illustrate the transition from a compensated hypertrophied myocardium to a decompensated failing myocardium, which is clinically manifested as decompensated heart failure.

2016

ZP, Huang, Ding Y, Chen J, Wu G, Kataoka M, Hu Y, Yang JH, et al. 2016. “Long Non-Coding RNAs Link Extracellular Matrix Gene Expression to Ischemic Cardiomyopathy”. Cardiovasc Res. 2016 Nov 01; 112 (2): 543–554.

AIMS:

Ischemic cardiomyopathy (ICM) resulting from myocardial infarction is a major cause of heart failure (HF). Recently, thousands of long non-coding RNAs (lncRNAs) have been discovered and implicated in a variety of biological processes. However, the role of most lncRNAs in HF remains largely unknown. The aim of this study is to test the hypothesis that the expression and function of lncRNAs are differentially regulated in diseased hearts.

METHODS AND RESULTS:

In this study, we performed RNA deep sequencing of protein-coding and non-coding RNAs from cardiac samples of patients with ICM ( n  = 15) and controls ( n  = 15). Genome-wide transcriptome analysis confirmed that many protein-coding genes previously known to be involved in HF were altered in ICM hearts. Among the 145 differentially expressed lncRNAs identified in ICM hearts, we found a set of 35 lncRNAs that display strong positive expression correlation. Expression correlation coefficient analyses of differentially expressed lncRNAs and protein-coding genes revealed a strong association between lncRNAs and extracellular matrix (ECM) protein-coding genes. We overexpressed or knocked down selected lncRNAs in cardiac fibroblasts and our results suggest that lncRNAs are important regulators of fibrosis and the expression of ECM synthesis genes. Moreover, we show that lncRNAs participate in the TGF-β pathway to modulate the expression of ECM genes and myofibroblast differentiation.

CONCLUSION:

Our studies demonstrate that the expression of many lncRNAs is dynamically regulated in ICM. lncRNAs regulate the expression and function of ECM and cardiac fibrosis during the development of ICM. Our results further indicate that lncRNAs may represent novel regulators of heart function and cardiac disorders, including ICM.

J, Ding, Nie M, Liu J, Hu X, Ma L, Deng ZL, and Wang DZ. 2016. “Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle”. PLoS One. 2016; 11(5):E0155349. PMID:, 27159388.
Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletalmuscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbpis required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiationin vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration.
GP, Diniz, and Wang DZ. 2016. “Regulation of Skeletal Muscle by MicroRNAs”. Compr Physiol. 2016 6 (3): 1279–94.
MicroRNAs (miRNAs) are a class of small noncoding RNAs highly conserved across species. miRNAs regulate gene expression posttranscriptionally by base pairing to complementary sequences mainly in the 3'-untranslated region of their target mRNAs to induce mRNA cleavage and translational repression. Thousands of miRNAs have been identified in human and their function has been linked to the regulation of both physiological and pathological processes. The skeletal muscle is the largest human organ responsible for locomotion, posture, and body metabolism. Several conditions such as aging, immobilization, exercise, and diet are associated with alterations in skeletal muscle structure and function. The genetic and molecular pathways that regulate muscle development, function, and regeneration as well as muscular disease have been well established in past decades. In recent years, numerous studies have underlined the importance of miRNAs in the control of skeletal muscle development and function, through its effects on several biological pathways critical for skeletal muscle homeostasis. Furthermore, it has become clear that alteration of the expression of many miRNAs or genetic mutations of miRNA genes is associated with changes on myogenesis and on progression of several skeletal muscle diseases. The present review provides an overview of the current studies and recent progress in elucidating the complex role exerted by miRNAs on skeletal muscle physiology and pathology. 
J, Ding, Lin ZQ, Jiang JM, Seidman CE, Seidman JG, Pu WT, and Wang DZ. 2016. “Preparation of RAAV9 to Overexpress or Knockdown Genes in Mouse Hearts”. J Vis Exp. 2016 12.
Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimal immunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations.
FJ, Naya, and Wang DZ. 2016. “(MYO) SLIDing Our Way Into the Vascular Pool of Long Noncoding RNAs”. Arterioscler Thromb Vasc Biol. 2016 10; 36 (10): 2033–4.
Emerging evidence has pointed to the importance of long non-coding RNAs (lncRNAs) in biological function and disease. However, lncRNAs remain largely unexploited in the vascular system. In this issue of ATVB, Zhao et al., identified a novel vascular smooth muscle cell-specific lncRNA, Myoslid. The investigators demonstrated that Myoslid, whose expression is transcriptionally controlled by SRF and myocardin, regulates smooth muscle cell proliferation and differentiation program, at least in part, by modulating the TGF-β pathway. This study has uncovered the involvement of non-coding RNAs in the already complicated gene regulatory networks in vascular biology, highlighting the potential of lncRNAs as novel therapeutic targets for cardiovascular disorders.

2015

ZP, Huang, Kataoka M, Chen J, Wu G, Ding J, Nie M, Lin Z, et al. 2015. “Cardiomyocyte-Enriched Protein CIP Protects Against Pathophysiological Stresses and Regulates Cardiac Homeostasis”. J Clin Invest. 2015 Nov 02; 125 (11): 4122–34.
Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression.
J, Ding, Chen J, Wang Y, Kataoka M, Ma L, Zhou P, Hu X, et al. 2015. “Trbp Regulates Heart Function through MicroRNA-Mediated Sox6 Repression”. Nat Genet. 2015 Jul; 47 (7): 776–83.
Cardiomyopathy is associated with altered expression of genes encoding contractile proteins. Here we show that Trbp (Tarbp2), an RNA-binding protein, is required for normal heart function. Cardiac-specific inactivation in mice of Trbp (Trbp(cKO)) caused progressive cardiomyopathy and lethal heart failure. Loss of Trbp function resulted in upregulation of Sox6, repression of genes encoding normal cardiac slow-twitch myofiber proteins and pathologically increased expression of genes encoding skeletal fast-twitch myofiber proteins. Remarkably, knockdown of Sox6 fully rescued the Trbp-mutant phenotype, whereas mice overexpressing Sox6phenocopied Trbp(cKO) mice. Trbp inactivation was mechanistically linked to Sox6 upregulation through altered processing of miR-208a, which is a direct inhibitor of Sox6. Transgenic overexpression of Mir208a sufficiently repressed Sox6, restored the balance in gene expression for fast- and slow-twitch myofiber proteins, and rescued cardiac function in Trbp(cKO) mice. Together, our studies identify a new Trbp-mediated microRNA-processing mechanism in the regulation of a linear genetic cascade essential for normal heartfunction.