Publications by Year: 2021

2021

Jugder, Bat-Erdene, Layla Kamareddine, and Paula Watnick. 2021. “Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histoneacetyl transferase complex”. Immunity.

Microbe-derived acetate activates the Drosophila immunodeficiency (IMD) pathway in a subset of enteroendocrine cells (EECs) of the anterior midgut. In these cells, the IMD pathway co-regulates expression of antimicrobial and enteroendocrine peptides including tachykinin, a repressor of intestinal lipid synthesis. To determine whether acetate acts on a cell surface pattern recognition receptor or an intracellular target, we asked whether acetate import was essential for IMD signaling. Mutagenesis and RNA interference revealed that the putative monocarboxylic acid transporter Tarag was essential for enhancement of IMD signaling by dietary acetate. Interference with histone deacetylation in EECs augmented transcription of genes regulated by the steroid hormone ecdysone including IMD targets. Reduced expression of the histone acetyltransferase Tip60 decreased IMD signaling and blocked rescue by dietary acetate and other sources of intracellular acetyl-CoA. Thus, microbe-derived acetate induces chromatin remodeling within enteroendocrine cells, co-regulating host metabolism and intestinal innate immunity via a Tip60-steroid hormone axis that is conserved in mammals.

Ganbat, Dariimaa, Bat-Erdene Jugder, Lkhamaa Ganbat, Miki Tomoeda, Erdenetsogt Dungubat, Yoshihisa Takahashi, Mori Ichiro, Takayuki Shiomi, and Yasuhiko Tomita. 2021. “The Efficacy of Vitamin K, a Member of Naphthoquinones in the Treatment of Cancer: A Systematic Review and Meta-Analysis”. Current Cancer Drug Targets.

Background: Redox dysregulation originating from metabolic alterations in cancer cells contributes to their proliferation, invasion, and resistance to therapy. Conversely, these features represent a specific vulnerability of malignant cells that can be selectively targeted by redox chemotherapeutics. Amongst them, Vitamin K (VitK), carries the potential against cancer stem cells, in addition to the rest of tumor mass.

Objectives: To assess the possible benefits and safety of VitK for cancer treatment using a systematic review and metaanalysis with a mixed-methods approach.

Methods: We performed a systematic search on several electronic databases for studies comparing VitK treatment with and without combination versus control groups. For quantitative studies, fully or partially reported clinical outcomes such as recurrence rates, survival, overall response, and adverse reactions were assessed. For qualitative studies, a narrative synthesis was accomplished.

Results: Our analysis suggested the clinical outcome of efficacy, the pooled hazard ratio for progression-free survival, and the pooled relative risk for overall survival, and overall response, were significantly higher in VitK therapy group compared to the placebo group (p<0.05). We did not observe any significant difference in the occurrence of adverse events between groups. Among qualitative studies, VitK treatment targeting myelodysplastic syndrome and advanced solid tumors resulted in 24.1% and 10% of clinical response, respectively.

Conclusion: VitK does not only exert antitumor effects against a wide range of tumor types, but it also has excellent synergism with other therapeutic agents.

Braidy, Nady, Hayden Alicajic, David Pow, Jason Smith, Bat-Erdene Jugder, Bruce J. Brew, Joseph A. Nicolazzo, and Gilles J. Guillemin. 2021. “Potential Mechanism of Cellular Uptake of the Excitotoxin Quinolinic Acid in Primary Human Neurons”. Molecular Neurobiology 58 (1): 34-54.
In Alzheimer’s disease (AD), excessive amounts of quinolinic acid (QUIN) accumulate within the brain parenchyma and dystrophic neurons. QUIN also regulates glutamate uptake into neurons, which may be due to modulation of Na+-dependent excitatory amino acid transporters (EAATs). To determine the biological relationships between QUIN and glutamate dysfunction, we first quantified the functionality and kinetics of [3H]QUIN uptake in primary human neurons using liquid scintillation. We then measured changes in the protein expression of the glutamate transporter EAAT3 and EAAT1b in primary neurons treated with QUIN and the EAAT inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (2,4-PDC) using western blotting and immunohistochemistry. Immunohistochemistry was further used to elucidate intracellular transport of exogenous QUIN and the lysosomal-associated membrane protein 2 (LAMP2). Structural insights into the binding between QUIN and EAAT3 were further investigated using molecular docking techniques. We report significant temperature-dependent high-affinity transport leading to neuronal uptake of [3H]QUIN with a Km of 42.2 μM, and a Vmax of 9.492 pmol/2 min/mg protein, comparable with the uptake of glutamate. We also found that QUIN increases expression of the EAAT3 monomer while decreasing the functional trimer. QUIN uptake into primary neurons was shown to involve EAAT3 as uptake was significantly attenuated following EAAT inhibition. We also demonstrated that QUIN increases the expression of aberrant EAAT1b protein in neurons further implicating QUIN-induced glutamate dysfunction. Furthermore, we demonstrated that QUIN is metabolised exclusively in lysosomes. The involvement of EAAT3 as a modulator for QUIN uptake was further confirmed using molecular docking. This study is the first to characterise a mechanism for QUIN uptake into primary human neurons involving EAAT3, opening potential targets to attenuate QUIN-induced excitotoxicity in neuroinflammatory diseases.